java Hibernate的缓存机制

缓存是数据库数据在内存中的临时容器,它包含了库表数据在内存中的临时拷贝,位于数据库与应用程序之间,其作用是为了降低应用程序对物理数据源访问的频次,从而提高应用的运行性能。

Hibernate的缓存机制

1.1持久化层的缓存的范围
持久层设计中,往往需要考虑几个不同层次中的数据缓存策略。这些层次的划分标准针对不同情况有所差异,一般而言,ORM的数据缓存应包含如下几个层次:
事务级缓存(Transaction Layer Cache)
缓存只能被当前事务访问。缓存的生命周期依赖于事务的生命周期,当事务结束时,缓存也就结束生命周期。在此范围下,缓存的介质是内存。事务可以是数据库事务或者应用事务,每个事务都有独自的缓存,缓存内的数据通常采用相互关联的对象形式。
应用级/进程级缓存(Application/Process Layer Cache)
缓存被进程内的所有事务共享。这些事务有可能是并发访问缓存,因此必须对缓存采取必要的事务隔离机制。缓存的生命周期依赖于进程的生命周期,进程结束时, 缓存也就结束了生命周期。进程范围的缓存可能会存放大量的数据,所以存放的介质可以是内存或硬盘。缓存内的数据既可以是相互关联的对象形式也可以是对象的 松散数据形式。对象的松散数据形式有点类似于对象的序列化数据,但是对象分解为松散的算法比对象序列化的算法要求更快。
集群级缓存(Cluster Layer Cache)
在集群环境中,缓存被一个机器或者多个机器的进程共享。缓存中的数据被复制到集群环境中的每个进程节点,进程间通过远程通信来保证缓存中的数据的一致性, 缓存中的数据通常采用对象的松散数据形式。对大多数应用来说,应该慎重地考虑是否需要使用集群范围的缓存,因为访问的速度不一定会比直接访问数据库数据的 速度快多少。
持久层提供以上多种层次的缓存。如果在事务级缓存中没有查到相应的数据,还可以到进程级或集群级缓存内查询,如果还是没有查到,那么只有到数据库中查询。 事务级缓存是持久化层的第一级缓存,通常它是必需的;进程级或集群级缓存是持久化层的第二级缓存,通常是可选的。
1.2 hibernate缓存机制
Hibernate提供了两种缓存,第一种是Session的缓存,又称为一级缓存。由于Session对象的生命周期通常对应一个数据库事务或者一个应 用事务,因此它的缓存是事务范围的缓存。第一级缓存是必需的,不允许而且事实上也无法卸除。在第一级缓存中,持久化类的每个实例都具有唯一的OID。

Hibernate第一级缓存(session的缓存)
Hibernate第二级缓存(SessionFactory的外置缓存)
缓存并发访问策略        查询缓存
缓存适配器
缓存的实现
第二种缓存是SessionFactory的缓存,又可以分为两类:内置缓存和外置缓存。sessionFactory的内置缓存和Session的缓存 在实现方式上比较相似,前者是SessionFactory对象的一些集合属性包含的数据,后者是指Session的一些集合属性包含的数据。 SessionFactory的内置缓存中存放了映射元数据和预定义SQL语句,映射元数据是映射文件中数据的拷贝,而预定义SQL语句是在 Hibernate初始化阶段根据映射元数据推导出来,SessionFactory的内置缓存是只读的,应用程序不能修改缓存中的映射元数据和预
定义SQL语句,因此SessionFactory不需要进行内置缓存与映射文件的同步。
SessionFactory的外置缓存是一个可配置的插件。在默认情况下,SessionFactory不会启用这个插件。外置缓存的数据是 数据库数据的拷贝,外置缓存的介质可以是内存或者硬盘。SessionFactory的外置缓存也被称为Hibernate的第二级缓存。由于 SessionFactory对象的生命周期和应用程序的整个过程对应,因此第二级缓存是进程范围或者集群范围的缓存。二级缓存将由从属于本 SessionFactroy的所有Session实例共享,因此有时成为SessionFactory Level Cache。这个缓存中存放的对象的松散数据。第二级对象有可能出现并发问题,因此需要采用适当的并发访问策略,该策略为被缓存的数据提供了事务隔离级 别。缓存适配器(Cache Provider)用于把具体的缓存实现软件与Hibernate集成。第二级缓存是可选的,可以在每个类或每个集合的粒度上配置第二级缓存。 Hibernate还为查询结果提供了一个查询缓存,它依赖于第二级缓存。
1.4二级缓存应用策略。
二级缓存在一个SessionFactory中有效,是优化的重中之重,因此,各类策略也考虑的较多,但是并非所有的情况都适合于使用二级缓存,需要根据具体情况来决定。同时可以针对某一个持久化对象配置其具体的缓存策略。适合于使用二级缓存的情况:
(1)数据不会被第三方修改;
一般情况下,会被hibernate以外修改的数据最好不要配置二级缓存,以免引起数据不一致问题。但是如果此数据因为性能的原因需要被缓存,同时又有可 能被第三方比如SQL修改,也可以为其配置二级缓存。只是需要在sql执行修改后手动清除cache,以保证数据的一致性。
(2)数据大小在可接收范围之内;
如果数据表数据量特别巨大,不适合配置二级缓存。原因是缓存的数据量过大可能会引起内存资源紧张,反而降低性能。如果数据表数据量特别巨大,但是经常使用的只是较新部分
的数据,也可以为其配置二级缓存。但是必须单独配置其持久化类的缓存策略,比如最大缓存数、缓存过期时间等,将这些参数降低至一个合理的范围(太高会引起内存资源紧张,太低了缓存的意义不大)。
(3)数据更新频率低;
对于数据更新频率过高的数据,频繁同步缓存中数据的代价可能和从查询缓存中的数据获得的好处相当,坏处益处相抵消。此时缓存的意义也不大。
(4)非关键数据(不是财务数据等)
财务数据等是非常重要的数据,绝对不允许出现或使用无效的数据,所以此时为了安全起见最好不要使用二级缓存。
2基于缓存的优化策略

查询性能往往是一个系统性能表现的重要方面。相对数据库的更新、删除操作而言,查询机制的优劣很大程度决定了系统的整体性能。
2.1查询缓存的应用
对于经常使用的查询语句,如果启用了查询缓存(QueryCache),当第一次执行查询语句时,hibernate会把查询结果存放在第二级缓存中。以后再执行该查询语句时,只需从缓存中获得查询结果,从而提高性能。
查询缓存策略的一般过程如下:
(1)Query Cache保存了之前查询执行过的Select SQL以及结果集等信息,组成一个Query Key。Query Key包括条件查询的请求一般信息:SQL,SQL需要的参数,记录范围(起始位置rowStart,最大记录个数maxRows)等。
(2)当再次遇到查询请求的时候,就会根据Query Key从Query Cache找,如果存在就返回这个结果列表;如果不存在,查询数据库获取结果列表,把整个结果列表根据Query Key放入到
Query缓存中。
(3)但是两次查询之间,数据表发生数据变动的话,Hibernate就会自动清除Query Cache中对应的Query Key。为了启用Query Cache,我们需要在hibernate.cfg.xml中进行
配置,参考配置如下(只列出核心配置项):
…………
true
…………
应用程序中必须在查询执行之前,将Query.Cacheable设置为true,而且每次都应该这样。比如:
………
Query query=session.createQuery(hql).setInteger(0.15);
query.setCacheable(true);
………
但是,Query Cache只在特定的条件下才会发挥作用,而且要求相当严格:
(1)完全相同的Select SQL重复执行。
(2)重复执行期间,Query Key对应的数据表不能有数据变动(比如添、删、改操作)。
并且,查询缓存在一个交易系统(数据变更频繁,查询条件相同的机率并不大)中可能会起反作用:它会白白耗费大量的系统资源但却很难发挥优势。
2.2数据查询方法的选用
完成同样的查询,Hibernate提供了可供选择的一些方式,但具体使用什么方式,可能对性能和代码都会有影响。
(1)Session.load/get方法均可以根据指定的实体类和id从数据
库读取记录,并返回与之对应的实体对象。
(a)Session.load
在执行session.load时,Hibernate首先从当前session的一级缓存中获取id对应的值,在获取不到的情况下,将根据该 对象是否配置了二级缓存来做相应的处理,如配置了二级缓存,则从二级缓存中获取id对应的值,如仍然获取不到则还需要根据是否配置了延迟加载来决定如何执 行,如未配置延迟加载则从数据库中直接获取,在从数据库获取到数据的情况下,Hibernate会相应的填充一级缓存和二级缓存,如配置了延迟加载则直接 返回一个代理类,只有在触发代理类的调用时才进行数据库查询的操作。如果未能发现符合条件的记录,load方法会抛出一个 ObjectNotFoundException。
(b)Session.get
在执行Session.get时,和Session.load不同的就是get方法则仅仅在内部缓存中进行数据查找,如没有发现对应数据,将越过二级缓存,直接调用SQL完成数据读取。直接从数据库中获取id
对应的值。如果未能发现符合条件的记录返回null,而且get方法永远直接返回实体类.
(2)Query.list/Query.iterate方法均可根据指定条件查询并返回符合条件的实体对象集。
(c)Query.list
在执行Query.list时,Hibernate的做法是首先检查是否配置了查询缓存,如配置了则从查询缓存中通过一条sql语句获取所有符 合条件的记录,并构造相应的实体对象,然后将其纳入缓存。如获取不到则从数据库中进行获取,从数据库获取到后Hibernate将会相应的填充一级、二级 和查询缓存,如获取到的为直接的结果集,则直接返回,如获取到的为一堆id的值,则再根据id获取相应的值(Session.load),最后形成结果集 返回。
(d)Query.iterate
在执行Query.iterate时,和Query.list的不同的在于从数据库获取的处理,Query.iterate向数据库发起的是 select id from这样的语句,也就是它是先获取符合查询条件的id,之后在进行iterate.next调用时才再次发起session.load的调用获取实际 的数据。iterate方法首先在本地缓存中根据id查找对应的实体对象是否存在(类似Session.load方法),如果缓存中已经存在对应的数据, 则直接以此数据对象为查询结果,如果没有找到,再执行相应的Select语句获得对应的库表记录。(iterate方法如果执行了数据库读取操
作并构建了完整的数据对象,也会将其查询结果纳入缓存)。而且,通过iterate,配合缓存管理API,在海量数据查询中可以很好的解决内存问题,如:
while(it.hasNext()){
YouObject object=(YouObject)it.next();
session.evict(youObject);
sessionFactory.evice(YouObject.class,youObject.getId());}
如果用list方法,很可能就出OutofMemory错误了。
可见,在拥有二级缓存并且查询参数多变的情况下,Query.iterate、Session.load会比Query.list及Session.get更为高效。

Tagged: , ,

Comments are closed.