java scala 开发spark程序

Spark内核是由Scala语言开发的,因此使用Scala语言开发Spark应用程序是自然而然的事情。如果你对Scala语言还不太熟悉,可以阅读网络教程 A Scala Tutorial for Java Programmers或者相关 Scala书籍进行学习。

 

本文将介绍3个Scala Spark编程实例,分别是WordCount、TopK和SparkJoin,分别代表了Spark的三种典型应用。

1. WordCount编程实例

WordCount是一个最简单的分布式应用实例,主要功能是统计输入目录中所有单词出现的总次数,编写步骤如下:

步骤1:创建一个SparkContext对象,该对象有四个参数:Spark master位置、应用程序名称,Spark安装目录和jar存放位置,对于Spark On YARN而言,最重要的是前两个参数,第一个参数指定为“yarn-standalone”,第二个参数是自定义的字符串,举例如下:

1
2
val sc = new SparkContext(args( 0 ), "WordCount" ,
     System.getenv( "SPARK_HOME" ), Seq(System.getenv( "SPARK_TEST_JAR" )))

步骤2:读取输入数据。我们要从HDFS上读取文本数据,可以使用SparkContext中的textFile函数将输入文件转换为一个RDD,该函数采用的是Hadoop中的TextInputFormat解析输入数据,举例如下:

1 val textFile = sc.textFile(args( 1 ))

当然,Spark允许你采用任何Hadoop InputFormat,比如二进制输入格式SequenceFileInputFormat,此时你可以使用SparkContext中的hadoopRDD函数,举例如下:

1
2
val inputFormatClass = classOf[SequenceFileInputFormat[Text,Text]]
var hadoopRdd = sc.hadoopRDD(conf, inputFormatClass, classOf[Text], classOf[Text])

或者直接创建一个HadoopRDD对象:

1
2
var hadoopRdd = new HadoopRDD(sc, conf,
      classOf[SequenceFileInputFormat[Text,Text, classOf[Text], classOf[Text])

步骤3:通过RDD转换算子操作和转换RDD,对于WordCount而言,首先需要从输入数据中每行字符串中解析出单词,然后将相同单词放到一个桶中,最后统计每个桶中每个单词出现的频率,举例如下:

1
2
3
     val result = hadoopRdd.flatMap{
         case (key, value)  = > value.toString().split( "\\s+" );
}.map(word = > (word, 1 )). reduceByKey ( _ _ )

其中,flatMap函数可以将一条记录转换成多条记录(一对多关系),map函数将一条记录转换为另一条记录(一对一关系),reduceByKey函数将key相同的数据划分到一个桶中,并以key为单位分组进行计算,这些函数的具体含义可参考: Spark Transformation

步骤4:将产生的RDD数据集保存到HDFS上。可以使用SparkContext中的saveAsTextFile哈数将数据集保存到HDFS目录下,默认采用Hadoop提供的TextOutputFormat,每条记录以“(key,value)”的形式打印输出,你也可以采用saveAsSequenceFile函数将数据保存为SequenceFile格式等,举例如下:

1 result.saveAsSequenceFile(args( 2 ))

当然,一般我们写Spark程序时,需要包含以下两个头文件:

1
2
import org.apache.spark. _
import SparkContext. _

WordCount完整程序已在“ Apache Spark学习:利用Eclipse构建Spark集成开发环境”一文中进行了介绍,在次不赘述。

需要注意的是,指定输入输出文件时,需要指定hdfs的URI,比如输入目录是hdfs://hadoop-test/tmp/input,输出目录是hdfs://hadoop-test/tmp/output,其中,“hdfs://hadoop-test”是由Hadoop配置文件core-site.xml中参数fs.default.name指定的,具体替换成你的配置即可。

2. TopK编程实例

TopK程序的任务是对一堆文本进行词频统计,并返回出现频率最高的K个词。如果采用MapReduce实现,则需要编写两个作业:WordCount和TopK,而使用Spark则只需一个作业,其中WordCount部分已由前面实现了,接下来顺着前面的实现,找到Top K个词。注意,本文的实现并不是最优的,有很大改进空间。

步骤1:首先需要对所有词按照词频排序,如下:

1
2
3
val sorted = result.map {
   case (key, value) = > (value, key); //exchange key and value
}.sortByKey( true 1 )

步骤2:返回前K个:

1 val topK = sorted.top(args( 3 ).toInt)

步骤3:将K各词打印出来:

1 topK.foreach(println)

注意,对于应用程序标准输出的内容,YARN将保存到Container的stdout日志中。在YARN中,每个Container存在三个日志文件,分别是stdout、stderr和syslog,前两个保存的是标准输出产生的内容,第三个保存的是log4j打印的日志,通常只有第三个日志中有内容。

本程序完整代码、编译好的jar包和运行脚本可以从 这里下载。下载之后,按照“ Apache Spark学习:利用Eclipse构建Spark集成开发环境”一文操作流程运行即可。

3. SparkJoin编程实例

在推荐领域有一个著名的开放测试集是movielens给的,下载链接是: http://grouplens.org/datasets/movielens/,该测试集包含三个文件,分别是ratings.dat、sers.dat、movies.dat,具体介绍可阅读: README.txt,本节给出的SparkJoin实例则通过连接ratings.dat和movies.dat两个文件得到平均得分超过4.0的电影列表,采用的数据集是: ml-1m。程序代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import org.apache.spark. _
import SparkContext. _
object SparkJoin {
   def main(args : Array[String]) {
     if (args.length ! = 4 ){
       println( "usage is org.test.WordCount <master> <rating> <movie> <output>" )
       return
     }
     val sc = new SparkContext(args( 0 ), "WordCount" ,
     System.getenv( "SPARK_HOME" ), Seq(System.getenv( "SPARK_TEST_JAR" )))
     // Read rating from HDFS file
     val textFile = sc.textFile(args( 1 ))
     //extract (movieid, rating)
     val rating = textFile.map(line = > {
         val fileds = line.split( "::" )
         (fileds( 1 ).toInt, fileds( 2 ).toDouble)
        })
     val movieScores = rating
        .groupByKey()
        .map(data = > {
          val avg = data. _ 2 .sum / data. _ 2 .size
          (data. _ 1 , avg)
        })
      // Read movie from HDFS file
      val movies = sc.textFile(args( 2 ))
      val movieskey = movies.map(line = > {
        val fileds = line.split( "::" )
         (fileds( 0 ).toInt, fileds( 1 ))
      }).keyBy(tup = > tup. _ 1 )
      // by join, we get <movie, averageRating, movieName>
      val result = movieScores
        .keyBy(tup = > tup. _ 1 )
        .join(movieskey)
        .filter(f = > f. _ 2 . _ 1 . _ 2 4.0 )
        .map(f = > (f. _ 1 , f. _ 2 . _ 1 . _ 2 , f. _ 2 . _ 2 . _ 2 ))
     result.saveAsTextFile(args( 3 ))
   }
}

你可以从 这里下载代码、编译好的jar包和运行脚本。

这个程序直接使用Spark编写有些麻烦,可以直接在 Shark上编写HQL实现,Shark是基于Spark的类似Hive的交互式查询引擎,具体可参考: Shark

4. 总结

Spark 程序设计对Scala语言的要求不高,正如Hadoop程序设计对Java语言要求不高一样,只要掌握了最基本的语法就能编写程序,且常见的语法和表达方式是很少的。通常,刚开始仿照官方实例编写程序,包括 Scala、Java和Python三种语言实例。

Tagged: ,

Comments are closed.